GEM – (Beochemical and Ecological Modelling	
🕞 Back	🕤 · 🔹 🏠 🛛	🥥
Address	http://www.farmscale.org/	▼ 🖓 Go Links

Eutrophication and Aquaculture in Coastal Systems Application of Screening Models for Assessment Farm-scale screening models

International Symposium on Research and Management of Eutrophication in Coastal Ecosystems. Nyborg, Denmark Session 12 – Eutrophication and Aquaculture

http://www.farmscale.org/

J.G. Ferreira, S.B. Bricker, A.J.S. Hawkins, R. Pastres, A. Newton

Plymouth Marine Laboratory

20th-23rd June 2006

Back 🜔

Address http

http://www.farmscale.org/

Topics

Shellfish aquaculture and its effects Farm-scale modelling approach Implementation and scenarios Case study results Synthesis

i∂ Go

Links

3

2

2

15 + 2

_ 8 ×

Sanggou Bay, China

GEM – Geochemical and	d Ecological Modelling
-----------------------	------------------------

Back

Address

http://www.farmscale.org/

\$

i ∂Go Links

_ B ×

Farm-scale environmental changes

- Shellfish farming is extensive aquaculture, deployed e.g. in longlines, ropes or trestles
- Water properties are modified during flow across these structures
- Chl a and POM are food sources for shellfish, and are reduced by filtration
- TPM distribution is changed by pseud
- Shellfish provide top-down eutrophication control and increase water clarity, but also reduce O₂
- Polyculture with fish cages reduces environmental impacts of cage farming and enhances crop value
- Polyculture with seaweeds reduces secondary eutrophication symptoms (O₂) and enhances crop value

Farm-scale modelling Application to shellfish aquaculture

- Define farm dimensions
- Define environmental parameters (e.g Chl a, POM, TPM, O₂)
- Select species and culture density
- Transport food across farm segments
- Calculate food depletion and oxygen consumption
- Output cultivation yield
- Assess eutrophication status

FARMTM

Farm Aquaculture Resource Management Model

- Intended for screening purposes
- Uses inputs from field data and larger scale models
- Applies state-of-the-art models for individual shellfish growth
- Developed and tested in C++, FORTRAN, PowerSim[™] and Stella[™]
- Implemented as a client-server application (runs on the web)
- Outputs shellfish yields and key ratios
- Applies ASSETS for eutrophication assessment

http://www.farmscale.org

🌏 Back 💧

Address http://www.farmscale.org/

_ 8 ×

🙆 Internet

Run the FARM model

Model run - screenshot

-

Farm layout			Shellfish cultivation			Environment		
Farm width	20	m	Species	Oysters 💌]	Water temperature	15	°C
Farm length	300	m	Cultivation period	20	days	Current speed	0.02	m s ⁻¹
Farm depth	10	m	Density (first box)	370	ind. m ⁻³	Chlorophyll a	5	ug L ⁻¹
N° sections	3		Density (middle box)	370	ind. m ⁻³	POM	5	mg L ⁻¹
Section volume	20000	m ³	Density (last box)	370	ind. m ⁻³	TPM	25	mg L ⁻¹
Total animals	otal animals			Dissolved oxygen		9.02	mg L ⁻¹	
Bottom culture			Use population			ASSETS score	High	
Harvestable biomass			Harvestable animals			Environment		
First box	-	tons	Adults (first box)	-	ind	Chl a (first box)	-	ug L-1
Middle box	-	tons	Adults (middle box)	-	ind	Chl a (middle box)	-	ug L-1
Last box	-	tons	Adults (last box)	-	ind	Chl a (last box)	-	ug L-1
Total harvest (TPP)	-	tons	Adults (total)	-	ind	Chl a (average)	-	ug L-1
Biomass ratio (APP)	-	%	Individuals (ratio)	-	%	Chl a reduction	-	%
						D.O. (minimum)	-	mg L ⁻¹
						D.O. (reduction) ASSETS score		%
Stop model			Open a model			Save model		
			Please select 💌 🕽	K		MPP 📝		

http://www.farmscale.org

GEM – Geochemical and Ecological Mode	lling		_ <u>- </u> - <u>-</u>
🚱 Back 📀 🗸 🔯			0
Address http://www.farmscale.org/		▼ 🖉 Go Links	
Results –	Different cu	I <mark>lture siti</mark> n	g
Farm	Dimensions (m)	Species	Model
	300X20X10	C. gigas	PML
Cultivation period (d)	45	45	45
Food	Chl <i>a</i> (μg L ⁻¹) 10	POM (mg L ⁻¹) 5	TPM (mg L ⁻¹) 25
Environment Sections 1,2,3	Density (ind m ⁻³) 500,500,500	T (° C) 15	O ₂ (mg L ⁻¹) 8.7
Current speed (m s ⁻¹)	High 0.5	Medium 0.1	Slow 0.02
Total seed (X10 ³ ind)	30000	30000	30000
Total harvest (TFW)	727.1	692.4	323.9
Biomass ratio	485	462	216
Final mean Chl <i>a</i> (μg L ⁻¹)	7.9	4.7	2.1
Final min. O ₂ (mg L ⁻¹)	8.4	7.7	6.9
Income (k€)	3656	3462	1619

GEM – Geochemical and Ecological Modelling	
--	--

6

G Back • \$

Address http://www.farmscale.org/		▼ 🖉 Go 🗍 Links	
Results – Diff	erent cultu	re distribu	ution
Farm	Dimensions (m) 300X20X10	Species <i>M. edulis</i>	Model PML
Cultivation period (d)	20	20	20
Food	Chl <i>a</i> (μg L ⁻¹) 6	POM (mg L ⁻¹) 2	TPM (mg L ⁻¹) 25
Environment	Current (m s ⁻¹) 0.02	T (° C) 15	O ₂ (mg L ⁻¹) 8.7
Distribution scenario	Increasing	Equal	Decreasing
Density (ind m ⁻³) (9) Sections 1-3,4-6,7-9	200,300,400	300 (all)	400,300,200
Total seed (X10 ³ ind)	18000	18000	18000
Total harvest (TFW)	42.9	42.8	42.2
Biomass ratio	48	48	47
Final mean Chl a (µg L ⁻¹)	3.3	3.0	2.9
Income (k€)	214.5	214	211

GEM –	Geochemical a	nd Ecological Modelling				
승 Back	🕤 • 🔮					۲
Address	http://www.farms	cale.org/		-	🔗 Go 🛛 Links	

Results – Different culture densities										
Farm	Dimensions (m) 300X20X10	Species <i>C. gigas</i>	Model PML							
Cultivation period (d)	180	180	180							
Food	Chl <i>a</i> (μg L ⁻¹) 5	POM (mg L ⁻¹) 5	TPM (mg L ⁻¹) 25							
Environment	Current (m s ⁻¹) 0.02	T (° C) 15	O ₂ (mg L ⁻¹) 8.7							
Cultivation scenario	Low	Medium	High							
Density (ind m ⁻³) Sections 1,2,3	25 (all)	100 (all)	500 (all)							
Total seed (X10 ³ ind)	1500	6000	30000							
Total harvest (TFW)	34.3	137.3	400.2							
Biomass ratio	458	458	267							
Final Chl <i>a</i> (μg L ⁻¹)	4.3	2.8	0.9							

171.5

686.5

2001

Income (k€)

G Back

Address

-) -

http://www.farmscale.org/

\$

🔗 🖓 Go 🛛 Links

-

Results – Economic analysis II

Seed (ton)	TPP (ton)	APP	MPP	VMP (€)	TR (TVP k€)	TC (k€)	Profit (k€)
0	0	0	0	0	0	0	0
7.5	15	1.98	1.98	9.9	74	6	69
15	31	2.05	2.12	10.6	154	11	143
30	66	2.20	<u>2.34</u>	11.7	329	23	307
39	86	<u>2.21</u>	2.23	11.2	430	29	401
60	118	1.97	1.53	7.7	591	45	546
75	128	1.71	0.68	3.4	642	56	586
90	132	1.47	0.15	0.8	661	68	(<u>593</u>)
111	<u>133</u>	1.19	-0.02	-0.1	<u>663</u>	83	580
120	132	1.10	-0.07	-0.3	660	90	570
150	129	0.86	-0.10	-0.5	645	113	532
180	125	0.70	-0.12	-0.6	627	135	492

Notes: Price of input (P_i) = 0.75 \in kg⁻¹; Price of output P_o = 5 \in kg⁻¹

GEM – Geochemical and Ecological Modelling										
Ġ Back 👩 🗸 🔯 🚮			۲							
Address http://www.farmscale.org/		💌 🤗 Go 🗍 Links								
Res	ults – ASSE	TS model	V/F D							
Farm	Dimensions (m) 300X20X10	Species Generic	Cultivation (d) 45							
Food	ChI <i>a</i> (µg L⁻¹)	POM (mg L ⁻¹)	TPM (mg L ⁻¹)							
	11	5	25							
Environment	Current (m s ⁻¹)	T (° C)	O ₂ (mg L ⁻¹)							
	0.02	15	7.0							
Cultivation scenario	Low	Medium	High							
Density (ind m ⁻³)	25 (all)	100 (all)	500 (all)							
Total seed (X10 ³ ind)	1500	6000	30000							
Total harvest (TFW)	13.1	36.8	39.1							
Final mean Chl <i>a</i> (μg L	1) 9.5	6.0	1.3							
Final min. $O_2(mg L^{-1})$	5.9	3.8	1.8							
ASSETS grade	🔸 🎦 Good 🚮 🔸	• 🔁 Moderate 📑 •	• Poor 🗲 •							
Income (k€)	65.5	184	195							

GEM –	GEM – Geochemical and Ecological Modelling								_ 8 ×			
C Back		4	6									۲
Address	http://www.fa	armsca	ale.org/						-	∂Go ∐Links		
							-					

Synthesis

- FARM is a screening model directed both at the farmer and the regulator;
- FARM has three uses: (i) Prospective analysis for siting or distribution;
 (ii) Ecological and economic optimisation of existing farms; (iii) Assessment of farm-related eutrophication effects (including mitigation);
- The seamless integration of ASSETS[™], allowing eutrophication assessment, means that FARM is effectively a screening model both for shellfish productivity and water quality;
- The model's simple interface hides complex internal processing, including transport equations, shellfish individual growth, population dynamics, dissolved oxygen balance and the calculation of ASSETS™;
- The FARM model will go live in the Fall of 2006, and will include the possibility of adding fish cages and seaweeds to explore polyculture effects. Different combinations of shellfish polyculture will be implemented in 2007;
- The FARM model is at the forefront of the latest generation of client-server models, part of the rapidly emerging paradigm of Software as a Service (SaaS).

http://www.farmscale.org